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Covariant formulation of wave-particle interaction in a transverse magnetic field

J. T. Mendonc¸a and L. Oliveira e Silva
Grupo de Lasers e Plasmas, Centro de Electrodinaˆmica, Instituto Superior Te´cnico, 1096 Lisboa Codex, Portugal

~Received 29 July 1996!

We consider the interaction of relativistic charged particles with a perpendicular monochromatic wave of
arbitrary amplitude in the presence of a static magnetic field. We introduce a covariant formulation based on a
super-Hamiltonian and we study the energy-time phase plane. This formalism considerably simplifies the
analysis of the problem and improves previous theoretical models. It is shown that the system dynamics for the
monochromatic perturbation is quite different from the usual wave-packet perturbation: with the present for-
mulation a finite stochastic web with three topologically distinct regions is observed.
@S1063-651X~97!05401-9#

PACS number~s!: 52.20.Dq, 03.20.1i, 05.45.1b
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The motion of charged particles in a uniform magne
field perturbed by an electrostatic wave is a fundame
problem in plasma physics and nonlinear Hamiltonian
namics that has been studied by several authors@1–10#. In
particular, it is relevant to the plasma heating by hig
frequency waves through cyclotron resonances@1,2#, to par-
ticle acceleration@3#, and to the so-called paradox of th
disappearance of the Landau damping of a plasma wave
weak transverse magnetic field@4#. Recently, Chernikov
et al.have studied the nonrelativistic interaction of a charg
particle with an electrostatic wave packet propagating p
pendicularly to the magnetic field, when the driving fr
quency is resonant with the cyclotron frequency@5#. The
most striking feature of this system is the presence of a
chastic web spreading over the entire phase space, allo
particle acceleration to large energies, by a process an
gous to Arnol’d diffusion@11#. The study of the relativistic
version of the wave-packet problem by Longcope and Su
@6# showed, however, that particles cannot diffuse to h
energies because, unlike the nonrelativistic regime, the
perturbed Hamiltonian is no longer degenerate, leading to
appearance of Kolmogorov-Arnold-Moser~KAM ! surfaces
that confine the stochastic web to regions below a crit
energy.

In this Brief Report, we propose a covariant formulati
for the fully relativistic problem of particle acceleration by
monochromatic electrostatic wave in the presence of a
pendicular magnetic field. The corresponding sup
Hamiltonian considerably simplifies the problem, and allo
for the study of the charged particle dynamics with arbitra
velocities in the presence of waves with arbitrary amplitu
In our treatment, the space-momentum variables are form
equivalent to the energy-time variables and the particle
namics can be studied directly on the energy-time ph
plane, giving a clearer insight to particle acceleration p
cesses. We apply this formalism to study the particula
important case of resonance between the cyclotron and
wave motion. We show that in this case a finite web regio
formed with a much richer topological structure than th
described in previous works@6# where the less realistic
wave-packet perturbation of infinite spectral width was us
For low-energy regions we identify a doubly periodic we
while for moderate energies this doubly periodic web is d
551063-651X/97/55~1!/1217~4!/$10.00
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torted and is gradually replaced by a singly periodic we
Finally, for high-energy particles, we observe the presenc
KAM tori, where a stochastic web cannot develop.

The usual relativistic Hamiltonian of a charged particle
massm and chargeq in the presence of an electrostatic wa
and a static magnetic field is

H[E5$c2@pW 2qAW ~rW,t !#21m2c4%1/21qF~rW2vW pt !,
~1!

wherevW p is the phase velocity of the wave andAW (rW,t) is the
vector potential associated with the external magnetic fie
With the Hamiltonian~1!, the canonical equations of motio
are relativistically invariant but are not covariant@12#.
Alternatively, we can use a super-Hamiltonian, whi
cannot be identified with the particle energyE, but which
is covariant in the Minkowski or relativistic space. Usin
the four-momentump̂5(E/c,pW ), and the four-potential
Â5(F/c,AW ) we write the four-kinetic momentum a
P̂5 p̂2qÂ. The square module ofP̂ is PaPa52m2c2, and
we can define the super-HamiltonianĤ as

Ĥ~ r̂ ,p̂![2
1

2
mc25

P̂2

2m
, ~2!

which generates the equations of motion for the new can
cal variables in the Minkowski space: the four-positio
r̂5(ct,rW), and the four-momentump̂. The proper timet
plays the usual role oft. From the definition of Eq.~2! it is
obvious that the new Hamiltonian is covariant. We now co
sider the dynamics of a charged particle, in the laborat
frame, in the presence of a static magnetic fieldBW 5B0eW y and
a perpendicular monochromatic electrostatic wave of f
quencyv, wave numberk, and amplitudeE0, described by
the electric fieldEW 5E0sin(kz2vt)eWz. In the Coulomb gauge
the explicit expression of the four-potential
Â5„2(E0 /ck)sin@kr

32(v/c)r0#,B0r
3,0,0…, and the super-

Hamiltonian is given by
1217 © 1997 The American Physical Society
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h5
p2

2
2
u2

2
1S V

Nv D 2q22 2au sin~q2y/N!

1
a2

4
cos~2q22y/N!2

a2

4

52
1

2
, ~3!

where the canonical variables (p,q) are the normalized mo
mentum p5p3 /mc5pz /mc, and the normalized position
q5kr35zvN/c. The canonical variables (u,y) are the nor-
malized energyu5p0 /mc52E/mc2, and the normalized
time y5kr05vNt. In Eq. ~3! , V is the nonrelativistic cy-
clotron frequency,N5ck/v is the refraction index of the
electrostatic wave, anda5qE0c/(vNmc2) is the normal-
ized amplitude of the perturbation. The super-Hamiltonian
independent ofr 15x and r 25y, hencep15px andp25py
are constants of the motion. Without loss of generality, th
constants are set to be zero in Eq.~3!. We observe that the
unperturbed Hamiltonian (a50) is degenerate in the spac
momentum variables and nondegenerate in the energy-
canonical variables. The space-momentum degeneracy
already observed in the nonrelativistic case@8#. The perma-
nence of a stochastic web in the relativistic description i
reminiscence of this fact, while the presence of KAM tori
due to the global nondegeneracy of the system, induced
the strong nonlinearity in the energy-time dynamics. T
duality can be easily explored in this covariant formalis
since both space momentum and time energy have equ
lent formal meanings, i.e., pairs of canonical variables
Minkowski space. Moreover, the explicit expression of t
covariant Hamiltonian is much easier to handle than Eq.~1!,
and a nonlinear analysis, similar to that used in the nonr
tivistic domain, can be performed.

We now generalize the procedure outlined by Zaslav
et al. @8# to this two-dimensional~2D! Hamiltonian. We
first transform the variables (p,q) into the corresponding
zero-order action-angle variables (I 1 ,u1), where
p5(2I 1V/Nv)1/2cosu1, andq5(2NvI 1 /V)1/2sinu1. Instead
of considering the system dynamics in the Poincare´ surface
of section (I 1 ,u1), we focus our attention on the phase pla
(E,t), which can give us direct insight on the charged p
ticle acceleration. For that purpose, we apply the formulat
of Zaslavskiiet al. to the canonical variablesu ~energy! and
y ~time!, using aF2-type generating function~Goldstein no-
tation! given byF25 Ĩ 2(u12yV/Nv)1 Ĩ 1u1, corresponding
to the transformation of variables:Ĩ 252uNv/V,
ũ25u12yV/Nv, I 15I 12 Ĩ 2, and ũ15u1. Using the stan-
dard properties of the Bessel functions it is possible to w
the new HamiltonianH̃ as a function of the new canonica
variables (Ĩ 1 ,ũ1 , Ĩ 2 ,ũ2):

H̃5H0~ Ĩ 1 , Ĩ 2!1a
V

Nv
Ĩ 2(

n
Jn~ r̃ !sinS nũ12

v

V
~ũ12 ũ2! D

2
a2

4 (
m

Jm~2r̃ !sinSmũ12
p

2
22

v

V
~ũ12 ũ2! D , ~4!
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where H0( Ĩ 1 , Ĩ 2)5( Ĩ 11 Ĩ 2)V/Nv2 Ĩ 2
2V2/2N2v2 and

r̃5@2(Ĩ 12 Ĩ 2)Nv/V#1/2. We now proceed by considerin
the special case of nonrelativistic resonance, i.e.,v5n0V. In
this case, we can single out the resonant HamiltonianhR ,
which is independent ofũ1:

hR5H0~ Ĩ 1 , Ĩ 2!1
a2

4
J2n0~2r̃ !sinS p

2
12n0ũ2D

2
a

n0N
Ĩ 2Jn0~ r̃ !sin~n0ũ21p!. ~5!

This Hamiltonian describes the resonant motion in the ph
plane (Ĩ 2 ,ũ2)-~energy, time!, corresponding to the surface o
sectionũ15const. The second term of Eq.~5! describes the
usual nonrelativistic web, while the third term gives the re
tivistic correction, which has a different periodicity and,
expected, is energy dependent. The frequency detu

dv5 u̇̃ 2 for a50 is defined asdv5]hR(a50)/] Ĩ 2
51/Nn02 Ĩ 2 /N

2n0
2. Since dvÞ0, the degeneracy is no

present and the HamiltonianhR has no web. However, the
structure ofhR is very close to a degenerate Hamiltonia
(dv.0, if Ĩ 2.Nn0—nonrelativistic energies!, and if the
perturbation is strong enough, the contribution of the no
resonant terms in Eq.~4! leads to the appearance of a st
chastic layer in the separatrix region that covers the g
between different separatrices, resulting in a large stocha
web. The contribution of these nonresonant terms will
discussed below.

We now consider the topological properties ofhR . The
fixed points (Ĩ 20,ũ20) of hR verify ]hR /] Ĩ 250, and
]hR /]ũ250:

2an0Nsin~n0ũ20!cos~n0ũ20!5 Ĩ 20
Jn0~ r̃ 0!

J2n0~2r̃ 0!
cos~n0ũ201p!,

~6!

1

Nn0
2

Ĩ 20
N2n0

2 2
]

] Ĩ 2
S a

Nn0
Ĩ 2Jn0~ r̃ !sin~n0ũ201p! D

Ĩ 25 Ĩ20

52
a2

4
sinS p

2
12n0ũ20D ]J2n0~2r̃ !

] Ĩ 2
U
Ĩ 25 Ĩ20

. ~7!

The analysis of Eqs.~5!–~7! shows that four topological dis
tinct regions exist, corresponding to the existence or non
istence of different kinds of fixed points. For low energie
Ĩ 2!an0N/4, the fixed points of hR are located at
]J2n0(2r̃ 0)/] r̃50`cos(2n0ũ2)50 ~elliptic fixed points! and

J2n0(2r̃ 0)50`sin(2n0ũ2)50 ~hyperbolic fixed points!. The

width of the cells is simply given byDcell52(r̃ sx
2 r̃ 0)52p, where r̃ sx is the value ofr̃ over the separatrix
joining two hyperbolic points. It is straightforward to sho
that the periodicity of the web in this region isp/n0 ~Fig. 1!.
The stability analysis of this set of fixed points shows th
the doubly periodic web only exists if
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Ĩ 20<an0N/A2. ~8!

However, and before the disappearance of the doubly p
odic fixed points, the relativistic corrections become imp
tant, and a transition region is present for energies betw
Ĩ 25an0N/4 and the threshold of Eq.~8! ~Fig. 2!. In this
region, the doubly periodic structure is mixed with a sing
periodic web due to the third term of Eq.~5!. For energies
above the threshold of Eq.~8!, the third term of Eq.~5! is
dominant, the doubly periodic structure disappears, and
structure of the fixed points is drastically changed. In fa
for these energies, and assumingN@1, the fixed points are
located at ]Jn0( r̃ 0)/] r̃50`cos(n0ũ2)50 ~elliptic fixed

points! and Jn0( r̃ 0)50`sin(n0ũ2)50 ~hyperbolic fixed
points!. Unlike the first region, the periodicity of the web
now 2p/n0 ~Fig. 3!. Furthermore, the width of each web ce
is, in this case,Dcell.4p. This means that for the weakl
relativistic regime the acceleration process inside each
cell is more important than in the nonrelativistic regime. F
high energies, the weblike structure becomes increasin

FIG. 1. Phase spaceE Ĩ 2 ,ũ2 of the resonant HamiltonianhR in the
doubly periodic region, for the parametersn054, N55, and
a58, with Ĩ 1050.

FIG. 2. Phase spaceE Ĩ 2 ,ũ2
of the resonant HamiltonianhR in

the transition region from the doubly periodic to the singly perio
weblike structure, for the same parameters of Fig. 1.
ri-
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en
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deformed giving rise to resonances similar to those of
asymmetric pendulum@13#, and finally the resonance struc
ture disappears, giving rise to KAM tori~Fig. 4!. The thresh-
old for this transition can be derived from the analysis
Eqs.~6! and~7!, corresponding to the existence of the sing
periodic fixed points, and it is given by

r̃ 3/25an0
2N2A2/p. ~9!

Above this threshold the weblike structure does not ex
and stochastic acceleration along the web is no longer p
sible. This is equivalent to the stochastic web limit alrea
observed for weak wave perturbations@6#. This intricate web
structure was not identified in previous works because it w
always considered a wide wave packet perturbation cha
terized by a single spatial period, equivalent to periodicd
kicks. The periodicity of the Diracd function is the same as
the periodicity of the square of thed function and, conse-

FIG. 3. Phase spaceE Ĩ 2 ,ũ2 of the resonant HamiltonianhR in the
region of the singly periodic web, with the same set of parame
of Fig. 1.

FIG. 4. Phase spaceE Ĩ 2 ,ũ2, of the resonant HamiltonianhR,
showing the transition from the singly periodic web to the KA
tori region. The analytical threshold of Eq.~9!, giving the upper
limit of the weblike region, isĨ 2 /n0N513.6, for the parameters
n054, N55, anda58, with Ĩ 10530Nn0.
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quently, the corresponding resonant Hamiltonian does
show a web with different periodicities in the time variab

The nonresonant terms of the super-Hamiltonian, wh
are theũ1-dependent terms in Eq.~4!, perturb the motion
near the separatrix and a stochastic layer will be formed.
the super-Hamiltonian in Eq.~5! the separatrix width can b
estimated as usual, by calculating the Melnikov-Arnol’d i
tegral @8,14#. In the doubly periodic region, the thickness
this layer isD( r̃ 0);(Ar̃ 0/a2)exp(2Ap r̃ 0

3/2/a2n0
2N2). Simi-

lar calculations show that the thickness of the singly perio
web verifies D( r̃ 0);(Ar̃ 0n0N/a Ĩ 20)exp@2Ap( r̃ 0/2)

3/2/
a Ĩ 20n0N#. The stochastic region around each separatrix w
overlap with similar regions from neighboring separatric
leading to the presence of a stochastic web. It should
pointed out that the dependence of the separatrix width
the amplitude of the perturbatione is always of the form
exp(2const/e), as long asN@1, in contrast with the
exp(2const/Ae) dependence of the Arnol’d web@8,14,15#.
Moreover, since the amplitude of the perturbation is cons
erably different in the two web regions, it is expected that
qualitative behavior of the separatrix width will also be d
ferent in the two regions. A more detailed analysis will
considered in a future publication, in connection with t
ys
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study of the motion of relativistic charged particles in a u
form magnetic field perturbed by a finite set of perpendicu
electrostatic waves.

In summary, we have introduced a covariant formulati
that allows for a more explicit description of the motion
relativistic charged particles in the presence of a static m
netic field and a perpendicular electrostatic wave. Using
formulation we have studied the phase plane time-ene
which can give direct information about the most efficie
regimes for regular and stochastic particle acceleration,
can be generalized to other types of perturbation, namel
finite set of perpendicular waves or obliquely propagat
electrostatic waves. We have identified four topologica
distinct phase-space regions and we have determined
boundaries of each region. The webs existing in the lo
energy region are equivalent to those already identified in
nonrelativistic regime@5#. However, it has been shown tha
for moderate energies, and just before the transition to KA
tori, a singly periodic region is also present.

This work was partially supported by Fundac¸ão Calouste
Gulbenkian in the frame of the program Estı´mulo à Investi-
gação Cientı́fica—1996.
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