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Covariant formulation of wave-particle interaction in a transverse magnetic field
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We consider the interaction of relativistic charged particles with a perpendicular monochromatic wave of
arbitrary amplitude in the presence of a static magnetic field. We introduce a covariant formulation based on a
super-Hamiltonian and we study the energy-time phase plane. This formalism considerably simplifies the
analysis of the problem and improves previous theoretical models. It is shown that the system dynamics for the
monochromatic perturbation is quite different from the usual wave-packet perturbation: with the present for-
mulation a finite stochastic web with three topologically distinct regions is observed.
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The motion of charged particles in a uniform magnetictorted and is gradually replaced by a singly periodic web.
field perturbed by an electrostatic wave is a fundamentaFinally, for high-energy particles, we observe the presence of
problem in plasma physics and nonlinear Hamiltonian dy-KAM tori, where a stochastic web cannot develop.
namics that has been studied by several autfibrd (. In The usual relativistic Hamiltonian of a charged particle of
particular, it is relevant to the plasma heating by high-massm and chargej in the presence of an electrostatic wave
frequency waves through cyclotron resonariéeg], to par-  and a static magnetic field is
ticle acceleration 3], and to the so-called paradox of the
disappearance of the Landau damping of a plasma wave ina B T P - -
weak transverse magnetic field]. Recently, Chernikov H=E={c[p—qgA(r,t)]*“+ mc*} "+ qd(r—vt),
et al. have studied the nonrelativistic interaction of a charged 1)
particle with an electrostatic wave packet propagating per-
pendicularly to the magnetic field, when the driving fre-
guency is resonant with the cyclotron frequer{&}. The
most striking feature of this system is the presence of a st
chastic web spreading over the entire phase space, allowin
particle acceleration to large energies, by a process anal i oe .
gous to Arnol'd diffusion[11]. The study of the relativistic Iternatlvely, we can use a sgper-Hamlltonlan, .Wh'Ch
version of the wave-packet problem by Longcope and SudaﬁannOt lc_)e |d¢nt|f|ed V.V'th the .partlcle (_-:‘r?ergy but Wh'Ch.
[6] showed, however, that particles cannot diffuse to high covariant in the Minkowski or relativistic space. Using
energies because, unlike the nonrelativistic regime, the urfhe four-momentump=(E/c, p), and the four-potential
perturbed Hamiltonian is no longer degenerate, leading to thA (<I>/c A) we write the four-kinetic momentum as
appearance of Kolmogorov-Arnold-MoséKAM) surfaces p= p—gA. The square module R is PP, =—m?c?, and
that confine the stochastic web to regions below a criticalye can define the super-Hamiltonighas
energy.

In this Brief Report, we propose a covariant formulation
for the fully relativistic problem of particle acceleration by a N 1
monochromatic electrostatic wave in the presence of a per- H(r,p)=— EmCZZ_, (2
pendicular magnetic field. The corresponding super-

Hamiltonian considerably simplifies the problem, and allows

for the study of the charged particle dynamics with arbitraryywhich generates the equations of motion for the new canoni-
velocities in the presence of waves with arbltrary amplltudeca| variables in the Minkowski space: the four- posmon
In our treatment, the space-momentum variables are formall —(ct,r), and the four-momentunp. The proper timer
equalent to the energy- tl_me variables and the p_artlcle dyz lays the usual role df. From the definition of Eq(2) it is
namics can be studied directly on the energy-time phas bvious that the new Hamiltonian is covariant. We now con-

plane, giving a clearer insight to particle acceleration pro-, sider the dynamics of a charged particle, in the Iaboratory
cesses. We apply this formalism to study the partlcularly

important case of resonance between the cyclotron and tHE*Me: in the presence of a static magnetic figldBoe, and
wave motion. We show that in this case a finite web region i& Perpendicular monochromatic electrostatic wave of fre-
formed with a much richer topological structure than thatduency«, wave numbek, and amplitudeg,, described by
described in previous work§s] where the less realistic the electric fieldE = Eqsinkz—wt)e,. In the Coulomb gauge,
wave-packet perturbation of infinite spectral width was usedthe  explicit expression of the four-potential is
For low-energy regions we identify a doubly periodic web, A= (— (Eq/ck)sinkr3—(w/c)r®],B,3,0,0, and the super-
while for moderate energies this doubly periodic web is dis-Hamiltonian is given by

wherev,, is the phase velocity of the wave aAqr,t) is the
vector potential associated with the external magnetic field.

ith the Hamiltonian(1), the canonical equations of motion
re relativistically invariant but are not covariapt2)].
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where the canonical variablep,) are the normalized mo-
mentum p=ps/mc=p,/mc, and the normalized position
q=kr3=zwN/c. The canonical variablesu(y) are the nor-

malized energyu=p,/mc=—E/mc?, and the normalized
time y=kr°=wNt. In Eq.(3) , Q is the nonrelativistic cy-
clotron frequencyN=ck/w is the refraction index of the
electrostatic wave, and=qEyc/(wNmc) is the normal-

BRIEF REPORTS

55
where  Ho(11,1,)=(I1+1,)Q/No—120%2N20w?  and
T=[2(I;—1,)New/Q]¥2 We now proceed by considering
the special case of nonrelativistic resonance, @& ng ). In
this case, we can single out the resonant Hamiltomign
which is independent of;:

2

~ o~ o _ T
hr=Ho(l1,12)+ ZJzno(Zr)sm —

2 + 2n002)

o 12 P)sinngB + ). )

This Hamiltonian describes the resonant motion in the phase
plane (2, 6,)-(energy, timg, corresponding to the surface of

sectiond,=const. The second term of E(h) describes the
usual nonrelativistic web, while the third term gives the rela-

ized amplitude of the perturbation. The super-Hamiltonian idivistic correction, which has a different periodicity and, as

independent of *=x andr?=y, hencep;=p, and p,=p,

expected, is energy dependent. The frequency detuning

are constants of the motion. Without loss of generality, thes%w:];2 for a=0 is defined as 5w=6’hR(a=0)/o7T2

constants are set to be zero in E8). We observe that the

=1/Nn0—T2/N2n§. Since dw#0, the degeneracy is not

unperturbed Hamiltoniana(=0) is degenerate in the space-

momentum variables and nondegenerate in the energy—timDresent and the Hamiltoniamz has no web. However, the

. i r re ofhg is very cl ner Hamiltonian
canonical variables. The space-momentum degeneracy wgels ucture offir is very close to a degenerate Hamiltonia

already observed in the nonrelativistic c48% The perma- (0@=0, if I;=Nno—nonrelativistic energigs and if the
nence of a stochastic web in the relativistic description is &€rturbation is strong enough, the contribution of the non-
reminiscence of this fact, while the presence of KAM tori is "€Sonant terms in Eq4) leads to the appearance of a sto-

due to the global nondegeneracy of the system, induced b§astic layer in the separatrix region that covers the gaps
the strong nonlinearity in the energy-time dynamics. ThisPetween d|fferer_1t separatrices, resulting in a large stoc_hast|c
duality can be easily explored in this covariant formalismWeb. The contribution of these nonresonant terms will be

since both space momentum and time energy have equiviscussed below. _ _
lent formal meanings, i.e., pairs of canonical variables in W€ now consider the topological propertiesigf. The
Minkowski space. Moreover, the explicit expression of thefixed points (,6,0) of hg verify ohg/dl,=0, and
covariant Hamiltonian is much easier to handle than(&y. Jhg/d6,=0:
and a nonlinear analysis, similar to that used in the nonrela-
tivistic domain, can be performed.

We now generalize the procedure outlined by Zaslavskii- on Nsin(ng6,0) co o fz0)
et al. [8] to this two-dimensional2D) Hamiltonian. We
first transform the variablesp(q) into the corresponding
zero-order  action-angle variables 1,(6,), where
p=(21,Q/Nw)Y%coss;, andq=(2Nwl ,/Q)%siné,. Instead 1
of considering the system dynamics in the Poincardace
of section (4, 6;), we focus our attention on the phase plane
(E,t), which can give us direct insight on the charged par-
ticle acceleration. For that purpose, we apply the formulation a®
of Zaslavskiiet al. to the canonical variablas (energy and == Tsm
y (time), using aF,-type generating functiofGoldstein no-
tation) given byF,=1,(6,—yQ/Nw)+1,6,, corresponding
to the transformation of variables:l,=—uNw/Q,  The analysis of Eq¢5)—(7) shows that four topological dis-
0,= 0,—yQINw, 1,=1,—1,, and ;= 6,. Using the stan- tinct regions exist, corresponding to the existence or nonex-
dard properties of the Bessel functions it is possible to writdStence of different kinds of fixed points. For low energies,
the new HamiltoniarH as a function of the new canonical 2<anoN/4, the fixed points ofhg are located at
variables (1, 01,15, 0,): 6J2n0(2r0)/&r=0/\co§(21002)=0 (elliptic fixed points and
JZHO(Z'FO):O/\sin(ZnOGZ)ZO (hyperbolic fixed points The
width of the cells is simply given byA =2(r
—To)=2m, whereTy, is the value ofr over the separatrix
joining two hyperbolic points. It is straightforward to show
that the periodicity of the web in this regionigng (Fig. 1.
The stability analysis of this set of fixed points shows that
the doubly periodic web only exists if

~ In,(To)

=l0———=—Cog Nyt m),

2n,(£lo ©

= 1530, (T)Sin(Ng Bog+ w))
2

( a
Nng

2=ho

9J2n,(2)

g +2ng 920) (7)

2 I2=ho

~ _~ O~ ~ _~ o~
H:H0(|1!|2)+aml2§ Jnﬁ)sin(nel—%(é’l—ﬂz))

o

a? . ~ W ~ ~
—Z§ Jm(Zr)sm(mal—z 25(91—02)), (4)
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FIG. 1. Phase spa@zfgz of the resonant Hamiltonialn, in the FIG. 3. Phase spacﬁ’qug2 of the resonant Hamiltoniam in the

doubly periodic region, for the parameterg=4, N=5, and  region of the singly periodic web, with the same set of parameters

I20= anON/\/E. (8 deformed giving rise to resonances similar to those of an

) asymmetric pendulurfil3], and finally the resonance struc-
However, and before the disappearance of the doubly peri;; o disappears, giving rise to KAM taffFig. 4). The thresh-

odic fixed points, the relativistic corrections become impor-g|q for this transition can be derived from the analysis of
tant, and a transition region is present for energies betwee@qs_(G) and(7), corresponding to the existence of the singly

|2=an0N/4 and the threshold of EC[S) (Flg 2) In this periodic fixed points’ and it is given by
region, the doubly periodic structure is mixed with a singly

periodic web due to the third term of E¢p). For energies
above the threshold of E¢8), the third term of Eq(5) is
dominant, the doubly periodic structure disappears, and th _ . .
structure of the fixed points is drastically changed. In fact,ﬁ‘b((j)ve thr|]s threshoklj the_ Wetl)hke sr;cructulr;)e_ doesl not exist,
for these energies, and assumNg- 1, the fixed points are and stochastic acceleration along the wep Is no longer pos-

~ ~ o sible. This is equivalent to the stochastic web limit already
located  at aJ”o(FO)/ Jgr=0/\cosfpby)=0 (elliptic fixed observed for weak wave perturbatidi@§. This intricate web

points and J, (o) =0/\sin(e#,)=0 (hyperbolic fixed structure was not identified in previous works because it was
pointg. Unlike the first region, the periodicity of the web is always considered a wide wave packet perturbation charac-
now 27/n, (Fig. 3). Furthermore, the width of each web cell terized by a single spatial period, equivalent to periodlic

is, in this caseA . =4m. This means that for the weakly kicks. The periodicity of the Diraé function is the same as
relativistic regime the acceleration process inside each wethe periodicity of the square of thé function and, conse-
cell is more important than in the nonrelativistic regime. For
high energies, the weblike structure becomes increasingly
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FIG. 2. Phase spacﬂ@,‘zj,,2 of the resonant Hamiltoniahg in tori region. The analytical th@shold of E(P), giving the upper
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bo/7 FIG. 4. Phase spacey, g, of the resonant Hamiltoniahg,
showing the transition from the singly periodic web to the KAM

the transition region from the doubly periodic to the singly periodiclimit of the weblike region, isl,/noN=13.6, for the parameters
weblike structure, for the same parameters of Fig. 1. no=4,N=5, anda=8, with | ,;=30Nn,.
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guently, the corresponding resonant Hamiltonian does naitudy of the motion of relativistic charged particles in a uni-
show a web with different periodicities in the time variable. form magnetic field perturbed by a finite set of perpendicular
The nonresonant terms of the super-Hamiltonian, whictelectrostatic waves.
are the #;-dependent terms in Ed4), perturb the motion In summary, we have introduced a covariant formulation
near the separatrix and a stochastic layer will be formed. Fathat allows for a more explicit description of the motion of
the super-Hamiltonian in Eq5) the separatrix width can be relativistic charged particles in the presence of a static mag-
estimated as usual, by calculating the Melnikov-Arnol'd in- netic field and a perpendicular electrostatic wave. Using this
tegral[8,14]. In the doubly periodic region, the thickness of formulation we have studied the phase plane time-energy,
this layer isA (To) ~ (\Vo/ a®)exp(— /7T g %/ a®ndN?). Simi-  which can give direct information about the most efficient
lar calculations show that the thickness of the singly periodigegimes for regular and stochastic particle acceleration, and
web  verifies  A(To)~(VonoN/ el ;) exid —\Va(To/2)¥*%  can be generalized to other types of perturbation, namely, a
al,0ngN]. The stochastic region around each separatrix willfinite set of perpendicular waves or obliquely propagating
overlap with similar regions from neighboring separatriceselectrostatic waves. We have identified four topologically
leading to the presence of a stochastic web. It should bdistinct phase-space regions and we have determined the
pointed out that the dependence of the separatrix width oBoundaries of each region. The webs existing in the low-
the amplitude of the perturbatioa is always of the form energy region are equivalent to those already identified in the
exp(-conste), as long asN>1, in contrast with the nonrelativistic regimd5]. However, it has been shown that
exp(—consthe) dependence of the Amol'd we8,14,15.  for moderate energies, and just before the transition to KAM
Moreover, since the amplitude of the perturbation is considtori, a singly periodic region is also present.
erably different in the two web regions, it is expected that the
qualitative behavior of the separatrix width will also be dif-  This work was partially supported by FundacCalouste
ferent in the two regions. A more detailed analysis will be Gulbenkian in the frame of the program stlo alnvesti-
considered in a future publication, in connection with thega@o Cientfica—1996.
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